Computing the greedy spanner in near-quadratic time
Public Deposited- Resource Type
- Creator
- Abstract
It is well-known that the greedy algorithm produces high quality spanners and therefore is used in several applications. However, for points in d-dimensional Euclidean space, the greedy algorithm has cubic running time. In this paper we present an algorithm that computes the greedy spanner (spanner computed by the greedy algorithm) for a set of n points from a metric space with bounded doubling dimension in time using space. Since the lower bound for computing such spanners is Ω(n 2), the time complexity of our algorithm is optimal to within a logarithmic factor.
- Language
- Publisher
- Identifier
- Citation
- Bose, P, Carmi, P. (Paz), Farshi, M. (Mohammad), Maheshwari, A, & Smid, M. (2008). Computing the greedy spanner in near-quadratic time. doi:10.1007/978-3-540-69903-3_35
- Date Created
- 2008-10-27
Relations
- In Collection:
Items
Thumbnail | Title | Date Uploaded | Visibility | Actions |
---|---|---|---|---|
|
greedy-quadratic.pdf | 2022-08-26 | Public | Download |