Control of selective mRNA translation over the torpor-arousal cycle of thirteen-lined ground squirrels

Public Deposited
Resource Type
  • Mammalian hibernation is an interesting adaptation that allows many capable animals like the thirteen-lined ground squirrel to endure the winter months on a low or absent food supply. Metabolic suppression during hibernation is facilitated by diverse biochemical mechanisms including the global shut-down of energy expensive processes like transcription and translation, the use of post-translational modifications to regulate protein activity, and differential gene/protein expression of essential protein products. Differential protein expression can occur during hibernation, but it remains incompletely understood how transcripts are “chosen” to be translated instead of stored or degraded. This thesis explores two mechanisms that may regulate differential gene and protein expression during hibernation, including RNA-binding protein (RBP) stabilization and transport of transcripts, and translation machinery activation. Notably, RBPs and cap-dependent translation factors were upregulated over the torpor-arousal cycle. These results suggest a vital role for proteins that regulate mRNA stability and enhance translation during metabolic suppression.

Thesis Degree Level
Thesis Degree Name
Thesis Degree Discipline
Rights Notes
  • Copyright © 2017 the author(s). Theses may be used for non-commercial research, educational, or related academic purposes only. Such uses include personal study, research, scholarship, and teaching. Theses may only be shared by linking to Carleton University Institutional Repository and no part may be used without proper attribution to the author. No part may be used for commercial purposes directly or indirectly via a for-profit platform; no adaptation or derivative works are permitted without consent from the copyright owner.
Date Created
  • 2017


In Collection: