Monte Carlo-based analysis of the effect of positional and thematic uncertainties in thematic maps on biodiversity model coefficients

Public Deposited
Resource Type
  • When modelling, considering the influence of all forms of uncertainty is important. This study used Monte Carlo simulation approaches to quantify the influence of positional and thematic uncertainties in landscape maps on metrics and model coefficients based on these maps. First, a brief comparison of simulation approaches, differing in their consideration of spatially correlated thematic error within agricultural fields, was conducted. Results helped to identify an approach under which the output distributions best-represented reference metrics. Second, the influence of both positional and thematic uncertainties on model coefficients were quantified and compared to already-considered forms of uncertainty. Three simulation approaches, differing in how they consider spatially correlated thematic error between fields, were used. Results suggest that the influence of positional and thematic uncertainties was lower. The demonstrated simulation approaches may be useful to studies in similar landscapes, where local reference data are not available, for updating coefficient confidence intervals.

Thesis Degree Level
Thesis Degree Name
Thesis Degree Discipline
Rights Notes
  • Copyright © 2015 the author(s). Theses may be used for non-commercial research, educational, or related academic purposes only. Such uses include personal study, research, scholarship, and teaching. Theses may only be shared by linking to Carleton University Institutional Repository and no part may be used without proper attribution to the author. No part may be used for commercial purposes directly or indirectly via a for-profit platform; no adaptation or derivative works are permitted without consent from the copyright owner.
Date Created
  • 2015


In Collection: