Non Reciprocal Passive Components on LTCC Ferrite Substrate

Public Deposited
Resource Type
  • This thesis investigates passive components (mainly circulators) based on ferrite LTCC substrate. The external magnets used in conventional circulators must be strong to overcome the ferrite's demagnetization factor. The novel circulator presented herein uses an embedded winding within the ferrite to magnetize the material from the inside, thereby significantly reducing the demagnetization effects. Because of the controllability of the bias field, the resulting device is also multifunctional: when the windings are energized by a current, the device operates as a dynamic circulator in which the circulation direction can be changed by switching the direction of the current. If an external magnet is placed on the circulator, its operating frequency can be changed by adjusting the bias current. Unlike other LTCC circulators with external magnets, the proposed device can even operate as a power splitter by removing the bias current. A circulator prototype has been characterized in three states: unbiased, biased by windings and biased by windings and external magnets. When no current is applied, the transmission of each port is about -5 dB with return loss better than 20 dB at 14.8 GHz. When a current of 300 mA is injected into the windings, the measured insertion loss and isolation of the circulator are approximately 3 dB and 8 dB, respectively, whereas the return loss is better than 20 dB at 14.2 GHz. When external magnets are added in addition to the current of 200 mA, the insertion loss and isolation improve to 1.6 dB and 23 dB, respectively at 14.2 GHz. The variation of the circulator's working frequency is 0.6 GHz. This is achieved firstly by the change of internal magnetization M when current is less than 120 mA, then the heat due to the winding increases the ferrite's μeff leading to more frequency shifting. The total size (L*W*H) is 8mm*8mm*1.1mm.

Thesis Degree Level
Thesis Degree Name
Thesis Degree Discipline
Rights Notes
  • Copyright © 2016 the author(s). Theses may be used for non-commercial research, educational, or related academic purposes only. Such uses include personal study, research, scholarship, and teaching. Theses may only be shared by linking to Carleton University Institutional Repository and no part may be used without proper attribution to the author. No part may be used for commercial purposes directly or indirectly via a for-profit platform; no adaptation or derivative works are permitted without consent from the copyright owner.
Date Created
  • 2016


In Collection: