On the Use of Frequency Response Functions in the Finite Element Model Updating

Public Deposited
Resource Type
  • Finite element model updating methodologies allow the identification of structures by improving the accuracy of an initial finite element model considering data acquired from a vibration test. Usually, numerical predictions and experimental results disagree thus requiring an updated model that best reproduces the dynamic behavior of the actual structure. Several updating methodologies have been developed in the last years such as the modal-based and response-based ones, which minimize the difference between the measured and predicted modal parameters and Frequency Response Functions, respectively. This thesis investigates a response-based method which iteratively minimizes a residual vector defined on the correlation functions between the Frequency Response Functions, which are directly available from experimental tests, to identify the mismodeled regions of a numerical model and improve the correlation with its experimental counterpart. The minimization problem is generally solved by means of the weighted least-squares approach and starting from a reference formulation available in literature, some enhancements are proposed, validated numerically, and extended to real experimental data using simple structures such as beams and plates. Finally, the proposed methodology is applied to identify the physical properties of a reduced-scale helicopter blade model that incorporates a semi-active device for vibration control, named Smart Spring. As a further study, the effectiveness of this device to reduce vibration is analytically verified through the development of its mathematical model in the frequency domain that makes use of an open-loop control law. Moreover, the capability of the Smart Spring to modulate the structural properties of a system and alter its dynamic behavior, thus acting as a semi-active device, is experimentally assessed through vibration tests performed at different operative working conditions of the device.

Thesis Degree Level
Thesis Degree Name
Thesis Degree Discipline
Rights Notes
  • Copyright © 2016 the author(s). Theses may be used for non-commercial research, educational, or related academic purposes only. Such uses include personal study, research, scholarship, and teaching. Theses may only be shared by linking to Carleton University Institutional Repository and no part may be used without proper attribution to the author. No part may be used for commercial purposes directly or indirectly via a for-profit platform; no adaptation or derivative works are permitted without consent from the copyright owner.
Date Created
  • 2016


In Collection: