Differential Contributions of NMDA Receptor Subtypes to Lamina II Synaptic Responses Across Juvenile Spinal Cord Development

Public Deposited
Resource Type
  • NMDA receptors are heteromeric complexes crucial to the regulation of excitatory synaptic transmission, including in the spinal cord. The presence of specific subtypes of GluN2 subunits determines the kinetic properties of receptor activity. The Hildebrand lab has demonstrated that slow-decaying GluN2B and GluN2D dominate NMDAR responses at lamina I adult spinal synapses, which is unlike the fast GluN2A-dominated synapses found throughout most of the mature CNS. The functional contribution of specific GluN2 subunits is less characterized for synaptic NMDAR responses in lamina II neurons. We performed whole-cell patch clamp recordings of mEPSCs in the presence and absence of subtype-specific NMDAR pharmacological blockers. We observed a relatively equal and stable contribution of GluN2A and GluN2B throughout lamina II development, contrasting the shift in contribution from GluN2B to GluN2A commonly observed during postnatal development in the brain. We also identified a slower synaptic NMDAR component that is blocked by a GluN2D antagonist.

Thesis Degree Level
Thesis Degree Name
Thesis Degree Discipline
Rights Notes
  • Copyright © 2019 the author(s). Theses may be used for non-commercial research, educational, or related academic purposes only. Such uses include personal study, research, scholarship, and teaching. Theses may only be shared by linking to Carleton University Institutional Repository and no part may be used without proper attribution to the author. No part may be used for commercial purposes directly or indirectly via a for-profit platform; no adaptation or derivative works are permitted without consent from the copyright owner.
Date Created
  • 2019


In Collection: