A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires 100nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre.
Social defeat in mice is a potent stressor that promotes the development of depressive- and anxiety-like behaviours, as well as variations of neuroendocrine and brain neurotransmitter activity. Although environmental enrichment may protect against some of the adverse behavioural and biological effects of social defeat, it seems that, among male group-housed mice maintained in an enriched environment (EE), aggressive behaviours may be more readily instigated, thus promoting distress and exacerbating psychopathological features. Thus, although an EE can potentially have numerous beneficial effects, these may depend on the general conditions in which mice were raised. It was observed in the current investigations that EE group-housed BALB/cByJ mice displayed increased anxiety-like behaviours compared to their counterparts maintained in a standard environment (SE). Furthermore, in response to social defeat, EE group-housed male mice exhibited decreased weight gain, exaggerated corticosterone elevations and altered hippocampal norepinephrine utilization compared to their SE counterparts. These effects were not apparent in the individually housed EE mice and, in fact, enrichment among these mice appeared to buffer against serotonin changes induced by social defeat. It is possible that some potentially beneficial effects of enrichment were precluded among group-housed mice, possibly owing to social disturbances that might occur in these conditions. In fact, even if social interaction is an essential feature of enrichment, it seems that some of the positive effects of this housing condition might be optimal when mice are housed individually, particularly with regard to buffering the effects of social defeat.
A 100-kDa protein that is a main component of the microsomal fraction from rabbit gastric mucosa is phosphorylated by cAMP-dependent protein kinase (PKA) in the presence of 0.2% Triton X-100. Microsomes from rabbit gastric mucosa possess activity of H,K-ATPase but not activity of Na,K-ATPase. Incubation of microsomes with 5 μM fluorescein 5′-isothiocyanate (FITC) results in both an inhibition of H,K-ATPase and labeling of a protein with an electrophoretic mobility corresponding to the mobility of the protein phosphorylated by PKA. The data suggest that the α-subunit of H,K-ATPase can be a potential target for PKA phosphorylation.
The electrical resistivity distribution at the base of La Soufrière of Guadeloupe lava dome is reconstructed by using transmission electrical resistivity data obtained by injecting an electrical current between two electrodes located on opposite sides of the volcano. Several pairs of injection electrodes are used in order to constitute a data set spanning the whole range of azimuths, and the electrical potential is measured along a cable covering an angular sector of ≈120? along the basis of the dome. The data are inverted to performa slice electrical resistivity tomography (SERT) with specific functions implemented in the EIDORS open source package dedicated to electrical impedance tomography applied to medicine and geophysics. The resulting image shows the presence of highly conductive regions separated by resistive ridges. The conductive regions correspond to unconsolidated material saturated by hydrothermal fluids. Two of them are associated with partial flank collapses and may represent large reservoirs that could have played an important role during past eruptive events. The resistive ridges may represent massive andesite and are expected to constitute hydraulic barriers.
Single-longitudinal-mode operation of Er3+-P2O5-codoped silica planar waveguide lasers which are equipped with integrated Bragg grating reflectors is demonstrated, with a polarized output of 340 μW at 1546 nm. The gratings are photo-imprinted using 193 nm light exposure through a phase mask in GeO2-free optical waveguides that have been sensitized by H2 loading.
The core refractive index of Corning SMF-28 optical fibre exposed to ArF laser pulses increases with the square of the fluence per pulse. Bragg gratings with a refractive index modulation amplitude higher than 10
-3 have been obtained. This is an order of magnitude improvement over previously reported values for this type of fibre in the absence of treatment to enhance the photosensitivity.
When hydrogen loading is used to enhance the photosensitivity of silica-based optical waveguides and fibres, the presence of molecular hydrogen dissolved in the glass matrix changes the effective index of propagation of guided optical modes by as much as 0.05%. Real-time monitoring of the reflectivity spectrum of Bragg gratings written in such conditions shows that the centre wavelength follows the changes in hydrogen concentration due to diffusion and reaction with glass defects.
An apodized chirped in-fibre Bragg grating that has a linear dispersion characteristic is reported. The frequency components of an optical pulse (centre wavelength 1551 nm; 10 GHz bandwidth) incident on the grating are reflected with a relative delay that varies linearly from 0 to 130 ps across the spectral width of the pulse. The dispersion compensator is used to correct for the dispersion in a 100 km link (nondispersion shifted fibre) operating at a 10 Gbit/s transmission rate and a wavelength of 1551 nm.