Phosphate glass samples doped with silver ions through a Na+-Ag+ ion-exchange process were treated in a hydrogen atmosphere at temperatures near 430 °C for durations ranging from 4 to 5 h. Such treatment causes metallic silver precipitation at the surface as well as nanoclustering of silver atoms under the surface under conditions very similar to those used for silicate glasses. The presence of silver clusters resulted in a characteristic coloring of the glass and was verified by the observation of a plasmon resonance peak near 410-420 nm in the absorption spectra. Applying a DC voltage between 1.4 and 2 kV at temperatures between 120 and 130 °C led to dissolution of the clusters in the area under the positive electrode, thereby bleaching the glass color. The use of a patterned doped-silicon electrode further led to the formation of a 300 nm thick surface relief on the glass surface and of a volume complex permittivity grating extending at least 4 μm under the surface. Such volume complex refractive index gratings may find applications in passive or active (laser) photonic devices in rare-earth doped phosphate glasses, where conventional bulk grating formation techniques have limited applicability.
Germanium ions have been implanted in fused silica using ion beams having energies of 3 and 5 MeV and doses ranging from 1×1012 to 5×1014 ions/cm2. For wavelengths shorter than 400 nm, the optical absorption increases strongly with two absorption bands appearing at 244 and 212 nm. The ion-induced optical absorption can be bleached almost completely by irradiation with 249 nm excimer laser light. Ion implantation also increases the refractive index of silica near the substrate surface. At 632.8 nm a refractive index increase of more than 10-2 has been measured. This decreases by 4×10-3 upon bleaching with 249 nm light.
We have studied optical changes induced by ArF (6.4 eV/193 nm) excimer laser light illumination of high purity SiO2 implanted with Si2+ (5 MeV) at a fluence of 1015 ions/cm2. Optical absorption was measured from 3 eV (400 nm) to 8 eV (155 nm) and showed evidence of several well-defined absorption bands. A correlation in the bleaching behavior appears to exist between the so-called D band (located at 7.15 eV) and the well-known B2α band which is attributed to oxygen vacancies. Changes in the refractive index as a function of ArF illumination were measured and found to be in good quantitative agreement with a Kramers-Kronig analysis of the optical absorption data.
A two-step double ion-exchange process is employed to produce dual-core waveguides in glass. First, potassium ion exchange is carried out at 400°C. Then, silver ion exchange is performed at 300°C. The fabricated waveguides have low losses, large single-mode regions, and more symmetrical profiles than single ion-exchanged waveguides. Etched gratings are also made in dual-core waveguides. Very high efficiencies are demonstrated in these waveguides.
A fiber twist sensor based on the surface plasmon resonance (SPR) effect of an Au-coated tilted fiber Bragg grating (TFBG) is proposed. The SPR response to the twist effect on an Au-coated TFBG (immersing in distilled water) is studied theoretically and experimentally. The results show that the transmission power around the wavelength of SPR changes with the twist angle. For the twist ranging from 0° to 180° in clockwise or anti-clockwise directions, the proposed sensor shows sensitivities of 0.037 dBm/° (S-polarized) and 0.039 dBm/° (P-polarized), which are almost 7.5 times higher than that of the current similar existing twist sensor.
We report on the fabrication of a chirped, phase mask that was used to create a fiber Bragg grating(FBG)device for the compensation of chromatic dispersion in longhaul optical transmission networks.Electron beamlithography was used to expose the grating onto a resist-coated quartz plate. After etching, this phase mask was used to holographically expose an index grating into the fiber core [K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett.62, 1035 (1993)]. The linear increase in the grating period, “chirp,” is only 0.55 nm over the 10 cm grating. This is too small to be defined by computer aided design and a digital deflection system. Instead, the chirp was incorporated by repeatedly rescaling the analog electronics used for field size calibration. Special attention must be paid to minimize any field stitching and exposure artifacts. This was done by using overlapping fields in a “voting” method. As a result, each grating line is exposed by the accumulation of three overlapping exposures at 1/3 dose. This translates any abrupt stitching error into a small but uniform change in the line-to-space ratio of the grating. The phase mask was used with the double-exposure photoprinting technique [K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, and K. Takiguchi, Opt. Lett. 19, 1314 (1994)]: a KrF excimer laser holographically imprints an apodized chirped Bragg grating in a hydrogen loaded SMF-28 optical fiber. Our experiments have demonstrated a spectral delay of −1311 ps/nm with a linearity of +/−10 ps over the 3 dB bandwidth of the resonant wavelength of the FBG. The reflectance, centered on 1550 nm, shows a side-lobe suppression of −25 dB. Fabrication processes and optical characterization will be discussed.
Photobleaching of optical absorption bands in the 5 eV region and the creation of others at higher and lower energy have been examined in the case of ArF (6.4 eV) and KrF (5 eV) excimer laserirradiation of 3GeO2:97SiO2glasses. We report a difference in the transformation process of the neutral oxygen monovacancy and also of the germanium lone pair center (GLPC) into electron trap centers associated with fourfold coordinated Ge ions and Ge-E′ centers when we use one or the other laser. Correlations between absorption bands and electron spin resonance signals were made after different steps of laser irradiation. It was found that the KrF laser generates twice as many Ge-E′ centers as the ArF laser for the same dose of energy delivered. The main reason for this difference is found to be the more efficient bleaching of the GLPC (5.14 eV) by the KrF laser compared to that by the ArF laser.
Silica-based thin-film multilayers are investigated as a means to enhance the effective second-order nonlinearity induced in silica glass structures by corona poling. Structures consisting of phosphorus-doped and undoped silica glass layers exhibit second harmonic generation (SHG) that is higher by an order of magnitude compared to the SHG in bulk silica glass poled under the same conditions. When the poled structure consists of two multilayered stacks separated in space, the stacks exhibit comparable poling-induced nonlinearities. This result suggests that the poling voltage is divided between the two stacks such that simultaneous poling of multiple regions within the sample is realized.