Two and a half hours of documentary footage from June 21, 2019, proceedings of the Senate when Bill C-81 received Royal Assent. The footage takes viewers behind the scenes with individuals closely involved with ensuring the Act received Royal Assent and features interviews with the Honourable Carla Qualtrough, Senator Jim Munson, James van Raalte, Sinead Tuite, Bill Adair, and Frank Folino.
Photobleaching of optical absorption bands in the 5 eV region and the creation of others at higher and lower energy have been examined in the case of ArF (6.4 eV) and KrF (5 eV) excimer laserirradiation of 3GeO2:97SiO2glasses. We report a difference in the transformation process of the neutral oxygen monovacancy and also of the germanium lone pair center (GLPC) into electron trap centers associated with fourfold coordinated Ge ions and Ge-E′ centers when we use one or the other laser. Correlations between absorption bands and electron spin resonance signals were made after different steps of laser irradiation. It was found that the KrF laser generates twice as many Ge-E′ centers as the ArF laser for the same dose of energy delivered. The main reason for this difference is found to be the more efficient bleaching of the GLPC (5.14 eV) by the KrF laser compared to that by the ArF laser.
Silica-based thin-film multilayers are investigated as a means to enhance the effective second-order nonlinearity induced in silica glass structures by corona poling. Structures consisting of phosphorus-doped and undoped silica glass layers exhibit second harmonic generation (SHG) that is higher by an order of magnitude compared to the SHG in bulk silica glass poled under the same conditions. When the poled structure consists of two multilayered stacks separated in space, the stacks exhibit comparable poling-induced nonlinearities. This result suggests that the poling voltage is divided between the two stacks such that simultaneous poling of multiple regions within the sample is realized.
Samples of synthetic fused silica have been implanted at room temperature with silicon ions of energy 1.5 MeV. Fluences ranged from 1011 to 1013 cm−2. Samples were probed using variable‐energy positron annihilation spectroscopy. The Doppler‐broadening S parameter corresponding to the implanted region decreased with increasing fluence and saturated at a fluence of 1013 cm−2. It is shown that the decrease in the S parameter is due to the suppression of positronium (Ps) which is formed in the preimplanted material, due to the competing process of implantation‐induced trapping of positrons. In order to satisfactorily model the positron data it was necessary to account for positron trapping due to defects created by both electronic and nuclear stopping of the implanted ions. Annealing of the 1013 cm−2 sample resulted in measurable recovery of the preimplanted S parameter spectrum at 350 °C and complete recovery to the preimplanted condition at 600 °C. Volume compaction was also observed afterimplantation. Upon annealing, the compaction was seen to decrease by 75%.
The effective indices of the cladding modes of optical fibers depend on the refractive index of the medium surrounding the fiber. We show experimentally and theoretically that while cladding modes with similar effective indices normally have similar refractometric sensitivities, the addition of a 50 nm thick gold sheath enhances the sensitivity of some EH modes by more than one order of magnitude while nearly completely suppressing the sensitivity of neighbouring HE modes (by three orders of magnitude, down to insignificant levels). A differential sensitivity of ∼1000 nm/(refractive index unit) is experimentally reported between adjacent EH and HE grating resonances.
A photolithographic method is described for fabricating refractive index Bragg gratings in photosensitive optical fiber by using a special phase mask grating made of silica glass. A KrF excimer laser beam (249 nm) at normal incidence is modulated spatially by the phase mask grating. The diffracted light, which forms a periodic, high-contrast intensity pattern with half the phase mask grating pitch, photoimprints a refractive index modulation into the core of photosensitive fiber placed behind, in proximity, and parallel, to the mask; the phase mask grating striations are oriented normal to the fiber axis. This method of fabricating in-fiber Bragg gratings is flexible, simple to use, results in reduced mechanical sensitivity of the grating writing apparatus and is functional even with low spatial and temporal coherence laser sources.