Search Constraints
1 - 2 of 2
Number of results to display per page
Search Results
-
- Resource Type:
- Article
- Creator:
- Urrutia, J., Opatrny, J., Chávez, E., Dobrev, S., Stacho, L., and Kranakis, Evangelos
- Abstract:
- We address the problem of discovering routes in strongly connected planar geometric networks with directed links. Motivated by the necessity for establishing communication in wireless ad hoc networks in which the only information available to a vertex is its immediate neighborhood, we are considering routing algorithms that use the neighborhood information of a vertex for routing with constant memory only. We solve the problem for three types of directed planar geometric networks: Eulerian (in which every vertex has the same number of incoming and outgoing edges), Outerplanar (in which a single face contains all vertices of the network), and Strongly Face Connected, a new class of geometric networks that we define in the article, consisting of several faces, each face being a strongly connected outerplanar graph.
- Date Created:
- 2006-08-01
-
- Resource Type:
- Conference Proceeding
- Creator:
- Krizanc, D., Yazdani, M., Stacho, L., Narayanan, L., Lambadaris, Ioannis, Opatrny, J., Czyzowicz, J., Kranakis, Evangelos, and Urrutia, J.
- Abstract:
- We consider n mobile sensors located on a line containing a barrier represented by a finite line segment. Sensors form a wireless sensor network and are able to move within the line. An intruder traversing the barrier can be detected only when it is within the sensing range of at least one sensor. The sensor network establishes barrier coverage of the segment if no intruder can penetrate the barrier from any direction in the plane without being detected. Starting from arbitrary initial positions of sensors on the line we are interested in finding final positions of sensors that establish barrier coverage and minimize the maximum distance traversed by any sensor. We distinguish several variants of the problem, based on (a) whether or not the sensors have identical ranges, (b) whether or not complete coverage is possible and (c) in the case when complete coverage is impossible, whether or not the maximal coverage is required to be contiguous. For the case of n sensors with identical range, when complete coverage is impossible, we give linear time optimal algorithms that achieve maximal coverage, both for the contiguous and non-contiguous case. When complete coverage is possible, we give an O(n 2) algorithm for an optimal solution, a linear time approximation scheme with approximation factor 2, and a (1∈+∈ε) PTAS. When the sensors have unequal ranges we show that a variation of the problem is NP-complete and identify some instances which can be solved with our algorithms for sensors with unequal ranges.
- Date Created:
- 2009-10-19