Search Constraints
1 - 3 of 3
Number of results to display per page
Search Results
-
- Resource Type:
- Article
- Creator:
- Ugursal, V. Ismet, Beausoleil-Morrison, Ian, Nikoofard, Sara, and Asaee, S. Rasoul
- Abstract:
- Techno-economic impact of retrofitting houses in the Canadian housing stock with PV and BIPV/T systems is evaluated using the Canadian Hybrid End-use Energy and Emission Model. Houses with south, south-east and south-west facing roofs are considered eligible for the retrofit since solar irradiation is maximum on south facing surfaces in the northern hemisphere. The PV system is used to produce electricity and supply the electrical demand of the house, with the excess electricity sold to the grid in a net-metering arrangement. The BIPV/T system produces electricity as well as thermal energy to supply the electrical as well as the thermal demands for space and domestic hot water heating. The PV system consists of PV panels installed on the available roof surface while the BIPV/T system adds a heat pump, thermal storage tank, auxiliary heater, domestic hot water heating equipment and hydronic heat delivery system, and replaces the existing heating system in eligible houses. The study predicts the energy savings, GHG emission reductions and tolerable capital costs for regions across Canada. Results indicate that the PV system retrofit yields 3% energy savings and 5% GHG emission reduction, while the BIPV/T system yields 18% energy savings and 17% GHG emission reduction in the Canadian housing stock. While the annual electricity use slightly increases, the fossil fuel use of the eligible houses substantially decreases due to BIPV/T system retrofit.
- Date Created:
- 2017-10-01
-
- Resource Type:
- Article
- Creator:
- Beausoleil-Morrison, Ian, Asaee, S. Rasoul, and Ugursal, V. Ismet
- Abstract:
- This study was conducted to assess the techno-economic feasibility of converting the Canadian housing stock (CHS) into net/near zero energy buildings by introducing and integrating high efficient and renewable/alternative energy technologies in new construction and existing houses. Performance assessment of energy retrofit and renewable/alternative energy technologies in existing houses in regional and national scale is necessary to devise feasible strategies and incentive measures. The Canadian Hybrid Residential End-Use Energy and GHG Emissions model (CHREM) that utilizes a bottom-up modeling approach is used to investigate the techno-economic feasibility of air to water heat pump retrofit in the Canadian housing stock. The proposed energy retrofit includes an air to water heat pump, auxiliary boiler, thermal storage tank, hydronic heat delivery and domestic hot water (DHW) heating. Energy savings, GHG emission changes and economic feasibility of the air source heat pump retrofit are considered in this study. Results show that there is a potential to reduce 36% of energy consumption and 23% of GHG emissions of the CHS if all eligible houses undertake the retrofit. Economic analysis indicates that the feasibility of air to water heat pump systems is strongly affected by the current status of primary energy use for electricity generation and space and DHW heating as well as energy prices and economic conditions. Legislation, economic incentives and education for homeowners are necessary to enhance the penetration level of air to water heat pump retrofits in the CHS.
- Date Created:
- 2017-01-25
-
Techno-economic assessment of solar assisted heat pump system retrofit in the Canadian housing stock
- Resource Type:
- Article
- Creator:
- Beausoleil-Morrison, Ian, Asaee, S. Rasoul, and Ugursal, V. Ismet
- Abstract:
- The techno-economic feasibility of retrofitting existing Canadian houses with solar assisted heat pump (SAHP) is investigated. The SAHP architecture is adopted from previous studies conducted for the Canadian climate. The system utilizes two thermal storage tanks to store excess solar energy for use later in the day. The control strategy is defined in order to prioritise the use of solar energy for space and domestic hot water heating purposes. Due to economic and technical constraints a series of eligibility criteria are introduced for a house to qualify for the retrofit. A model was built in ESP-r and the retrofit was introduced into all eligible houses in the Canadian Hybrid Residential End-Use Energy and GHG Emissions model. Simulations were conducted for an entire year to estimate the annual energy savings, and GHG emission reductions. Results show that the SAHP system performance is strongly affected by climatic conditions, auxiliary energy sources and fuel mixture for electricity generation. Energy consumption and GHG emission of the Canadian housing stock can be reduced by about 20% if all eligible houses receive the SAHP system retrofit. Economic analysis indicates that the incentive measures will likely be necessary to promote the SAHP system in the Canadian residential market.
- Date Created:
- 2017-01-01