Given a connected geometric graph G, we consider the problem of constructing a t-spanner of G having the minimum number of edges. We prove that for every t with 1 1+1/t) edges. This bound almost matches the known upper bound, which states that every connected weighted graph with n vertices contains a t-spanner with O(tn1+2/(t+1)) edges. We also prove that the problem of deciding whether a given geometric graph contains a t-spanner with at most K edges is NP-hard. Previously, this NP-hardness result was only known for non-geometric graphs.