Search Constraints
1 - 2 of 2
Number of results to display per page
Search Results
-
- Resource Type:
- Conference Proceeding
- Creator:
- Guo, Yuhong and Li, Xin
- Abstract:
- Semantic scene classification is a challenging problem in computer vision. In this paper, we present a novel multi-level active learning approach to reduce the human annotation effort for training robust scene classification models. Different from most existing active learning methods that can only query labels for selected instances at the target categorization level, i.e., the scene class level, our approach establishes a semantic framework that predicts scene labels based on a latent object-based semantic representation of images, and is capable to query labels at two different levels, the target scene class level (abstractive high level) and the latent object class level (semantic middle level). Specifically, we develop an adaptive active learning strategy to perform multi-level label query, which maintains the default label query at the target scene class level, but switches to the latent object class level whenever an "unexpected" target class label is returned by the labeler. We conduct experiments on two standard scene classification datasets to investigate the efficacy of the proposed approach. Our empirical results show the proposed adaptive multi-level active learning approach can outperform both baseline active learning methods and a state-of-the-art multi-level active learning method.
- Date Created:
- 2014-01-01
-
- Resource Type:
- Conference Proceeding
- Creator:
- Guo, Yuhong and Li, Xin
- Abstract:
- Multi-label classification is a central problem in many application domains. In this paper, we present a novel supervised bi-directional model that learns a low-dimensional mid-level representation for multi-label classification. Unlike traditional multi-label learning methods which identify intermediate representations from either the input space or the output space but not both, the mid-level representation in our model has two complementary parts that capture intrinsic information of the input data and the output labels respectively under the autoencoder principle while augmenting each other for the target output label prediction. The resulting optimization problem can be solved efficiently using an iterative procedure with alternating steps, while closed-form solutions exist for one major step. Our experiments conducted on a variety of multi-label data sets demonstrate the efficacy of the proposed bi-directional representation learning model for multi-label classification.
- Date Created:
- 2014-01-01