Search Constraints
Filtering by:
Creator
Garcia-Alfaro, Joaquin
Remove constraint Creator: Garcia-Alfaro, Joaquin
1 - 2 of 2
Number of results to display per page
Search Results
-
- Resource Type:
- Conference Proceeding
- Creator:
- Cervera, Gimer, Barbeau, Michel, Garcia-Alfaro, Joaquin, and Kranakis, Evangelos
- Abstract:
- The Hierarchical Optimized Link State Routing (HOLSR) protocol enhances the scalability and heterogeneity of traditional OLSR-based Mobile Ad-Hoc Networks (MANETs). It organizes the network in logical levels and nodes in clusters. In every cluster, it implements the mechanisms and algorithms of the original OLSR to generate and to distribute control traffic information. However, the HOLSR protocol was designed with no security in mind. Indeed, it both inherits, from OLSR, and adds new security threats. For instance, the existence of misbehaving nodes can highly affect important HOLSR operations, such as the cluster formation. Cluster IDentification (CID) messages are implemented to organize a HOLSR network in clusters. In every message, the hop count field indicates to the receiver the distance in hops to the originator. An attacker may maliciously alter the hop count field. As a consequence, a receiver node may join a cluster head farther away than it appears. Then, the scalability properties in a HOLSR network is affected by an unbalanced distribution of nodes per cluster. We present a solution based on the use of hash chains to protect mutable fields in CID messages. As a consequence, when a misbehaving node alters the hop count field in a CID message, the receiver nodes are able of detecting and discarding the invalid message.
- Date Created:
- 2012-01-27
-
- Resource Type:
- Conference Proceeding
- Creator:
- Barbeau, Michel, Kranakis, Evangelos, and Garcia-Alfaro, Joaquin
- Abstract:
- The design and implementation of security threat mitigation mechanisms in RFID systems, specially in low-cost RFID tags, are gaining great attention in both industry and academia. One main focus of research interests is the authentication and privacy techniques to prevent attacks targeting the insecure wireless channel of these systems. Cryptography is a key tool to address these threats. Nevertheless, strong hardware constraints, such as production costs, power consumption, time of response, and regulations compliance, makes the use of traditional cryptography in these systems a very challenging problem. The use of low-overhead procedures becomes the main approach to solve these challenging problems where traditional cryptography cannot fit. Recent results and trends, with an emphasis on lightweight techniques for addressing critical threats against low-cost RFID systems, are surveyed.
- Date Created:
- 2010-05-03