The well-separated pair decomposition (WSPD) of the complete Euclidean graph defined on points in ℝ2 (Callahan and Kosaraju [JACM, 42 (1): 67-90, 1995]) is a technique for partitioning the edges of the complete graph based on length into a linear number of sets. Among the many different applications of WSPDs, Callahan and Kosaraju proved that the sparse subgraph that results by selecting an arbitrary edge from each set (called WSPD-spanner) is a 1 + 8/(s − 4)-spanner, where s > 4 is the separation ratio used for partitioning the edges. Although competitive local-routing strategies exist for various spanners such as Yao-graphs, Θ-graphs, and variants of Delaunay graphs, few local-routing strategies are known for any WSPD-spanner. Our main contribution is a local-routing algorithm with a near-optimal competitive routing ratio of 1 + O(1/s) on a WSPD-spanner. Specifically, we present a 2-local and a 1-local routing algorithm on a WSPD-spanner with competitive routing ratios of 1+6/(s−2)+4/s and 1+6/(s−2)+ 6/s + 4/(s2 − 2s) + 8/s2respectively.
We prove that for all 0 ≤ t ≤ k and d ≥ 2k, every graph G with treewidth at most k has a 'large' induced subgraph H, where H has treewidth at most t and every vertex in H has degree at most d in G, The order of H depends on t, k, d, and the order of G. With t = k, we obtain large sets of bounded degree vertices. With t = 0, we obtain large independent sets of bounded degree. In both these cases, our bounds on the order of H are tight. For bounded degree independent sets in trees, we characterise the extremal graphs. Finally, we prove that an interval graph with maximum clique size k has a maximum independent set in which every vertex has degree at most 2k.