Search Constraints
1 - 3 of 3
Number of results to display per page
Search Results
-
- Resource Type:
- Conference Proceeding
- Creator:
- Cervera, Gimer, Barbeau, Michel, Garcia-Alfaro, Joaquin, and Kranakis, Evangelos
- Abstract:
- The Hierarchical Optimized Link State Routing (HOLSR) protocol enhances the scalability and heterogeneity of traditional OLSR-based Mobile Ad-Hoc Networks (MANETs). It organizes the network in logical levels and nodes in clusters. In every cluster, it implements the mechanisms and algorithms of the original OLSR to generate and to distribute control traffic information. However, the HOLSR protocol was designed with no security in mind. Indeed, it both inherits, from OLSR, and adds new security threats. For instance, the existence of misbehaving nodes can highly affect important HOLSR operations, such as the cluster formation. Cluster IDentification (CID) messages are implemented to organize a HOLSR network in clusters. In every message, the hop count field indicates to the receiver the distance in hops to the originator. An attacker may maliciously alter the hop count field. As a consequence, a receiver node may join a cluster head farther away than it appears. Then, the scalability properties in a HOLSR network is affected by an unbalanced distribution of nodes per cluster. We present a solution based on the use of hash chains to protect mutable fields in CID messages. As a consequence, when a misbehaving node alters the hop count field in a CID message, the receiver nodes are able of detecting and discarding the invalid message.
- Date Created:
- 2012-01-27
-
- Resource Type:
- Conference Proceeding
- Creator:
- Barbeau, Michel, Kranakis, Evangelos, and Garcia-Alfaro, Joaquin
- Abstract:
- The design and implementation of security threat mitigation mechanisms in RFID systems, specially in low-cost RFID tags, are gaining great attention in both industry and academia. One main focus of research interests is the authentication and privacy techniques to prevent attacks targeting the insecure wireless channel of these systems. Cryptography is a key tool to address these threats. Nevertheless, strong hardware constraints, such as production costs, power consumption, time of response, and regulations compliance, makes the use of traditional cryptography in these systems a very challenging problem. The use of low-overhead procedures becomes the main approach to solve these challenging problems where traditional cryptography cannot fit. Recent results and trends, with an emphasis on lightweight techniques for addressing critical threats against low-cost RFID systems, are surveyed.
- Date Created:
- 2010-05-03
-
- Resource Type:
- Conference Proceeding
- Creator:
- Barbeau, Michel and Laurendeau, Christine
- Abstract:
- Increasingly ubiquitous wireless technologies require novel localization techniques to pinpoint the position of an uncooperative node, whether the target be a malicious device engaging in a security exploit or a low-battery handset in the middle of a critical emergency. Such scenarios necessitate that a radio signal source be localized by other network nodes efficiently, using minimal information. We propose two new algorithms for estimating the position of an uncooperative transmitter, based on the received signal strength (RSS) of a single target message at a set of receivers whose coordinates are known. As an extension to the concept of centroid localization, our mechanisms weigh each receiver's coordinates based on the message's relative RSS at that receiver, with respect to the span of RSS values over all receivers. The weights may decrease from the highest RSS receiver either linearly or exponentially. Our simulation results demonstrate that for all but the most sparsely populated wireless networks, our exponentially weighted mechanism localizes a target node within the regulations stipulated for emergency services location accuracy.
- Date Created:
- 2009-09-28